

◆LCAの算定(ホールライフカーボン)

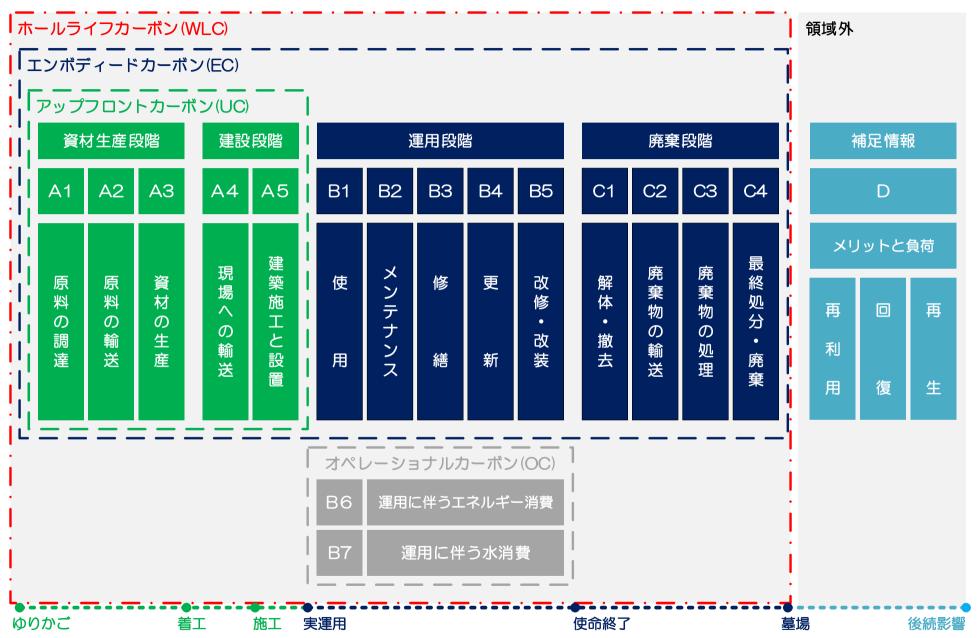
### 建築物LCA



◆なぜ温室効果ガス(GHG)の算定がもとめられているか? 建設業の温室効果ガス(GHG)排出量は、世界の37%を占めているとの報告がある

パリ協定・SDGs ⇒ 建物のライフサイクルで捉える

GHGプロトコル ⇒ 脱炭素開示要求


### ライフサイクルにおけるGHG(CO2e)の算定

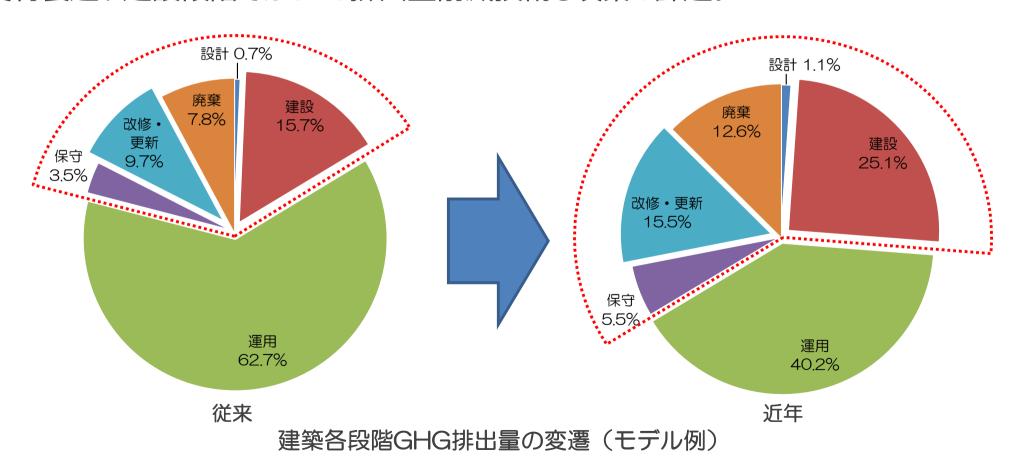
建物の企画段階から解体・廃棄するまで生涯を渡って地球温暖化への影響度を把握するため、ライフサイクルのGHG排出量(CO2e)を定量的に評価。



## ライフサイクルカーボンの枠組み






出典:令和5年度ゼロカーボンビル(Icco2ネットゼロ)推進会議報告書 令和6年3月

### 建築物LCAの変化



### LCAにおける排出割合の変化

従来、建設業における温室効果ガス排出量のうちに、運用段階が建物生涯の大部分を占めていた。近年、運用時の省エネ性能が向上、それに伴ってGHGの排出量が低減されている。 運用段階の削減により、建設段階の排出量は建物生涯に占める割合が増加している。 資材製造や建設段階ではGHG排出量削減技術も喫緊の課題。



### サプライチェーン排出量の変化



Scope1・2 からScope1・2・3へ変化

サプライチェーンとは、**原料調達・建材製造・物流・建設・廃棄等、一連の流れ全体**をいい、 そこから発生する排出量を<mark>サプライチェーン排出量</mark>と呼ぶ。

サプライチェーン排出量 = Scope1排出量 + Scope2排出量 + Scope3排出量 環境経営指標、機関投資、格付けなどCSR情報として利用される



○の数字はScope 3 のカテゴリ

出典:環境省https://www.env.go.jp/earth/ondanka/supply\_chain/gvc/estimate.html

モノがつくられ廃棄されるまでのサプライチェーンにおけるGHG排出量の捉え方として、「スコープ1」「スコープ2」「スコープ3」という分類方法がある。

GHG排出量を算定・報告するために定められた国際的な基準「GHGプロトコル」で規定される。

金融市場におけるScope3も含めた企業価値の評価に変化

## Scopeの定義



#### 関係者によって変わる範囲

建築物のLCAとサプライチェーン排出量の関係 建築物のLCA(ISO21930)



出典:令和5年度ゼロカーボンビル(Icco2ネットゼロ)推進会議報告書 令和6年3月

Scope3のサプライチェーンにかかわる取引先と協力した排出量削減が必要



# ライフサイクルにおけるGHG算定に向けて



#### CO2排出量算定ツールの種類

国際規格や算定範囲、容易性などを考慮して開発が行われている

| 算定法                     | バージョン | データベース                               | 発行元                                                              | 算定可能範囲         |
|-------------------------|-------|--------------------------------------|------------------------------------------------------------------|----------------|
| AIJ-LCAツール              | 2013  | 2005年3EID                            | 一般社団法人 日本建築学会                                                    | WLC<br>(UC抽出可) |
|                         | 2024  | 2015年3EID                            | 放任凶広人 口本连案子云                                                     |                |
| 不動産協会GHGマニュアル<br>(GHGM) | 2024  | 2024年版AIJツール<br>(2015年3EID)          | 一般社団法人不動産協会                                                      | UC             |
| OCL                     | 随時更新  | Ecoinvent(メイン)<br>EPD、EIDなど          | One Click LCA社(フィンランド)                                           | WLC<br>(UC抽出可) |
| J-CAT 2024/10           |       | GHGM<br>2013年版AIJツール<br>(2005年3EID)) | 一般財団法人<br>住宅・建築 SDGs 推進センター(IBECs)<br>(ゼロカーボンビル(Icco2ネットゼロ)推進会議) | WLC<br>(UC抽出可) |

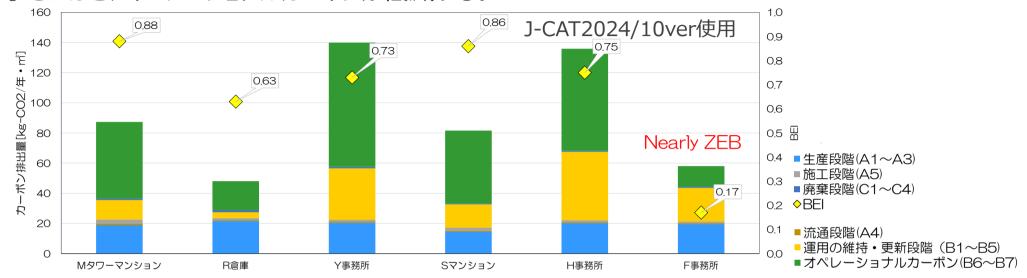
# ライフサイクルにおけるGHG算定に向けて

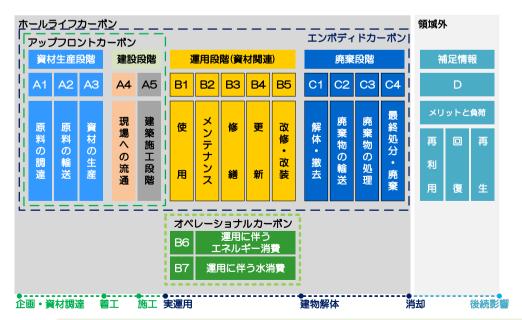


### データベース (排出量原単位)

※総務省より公表

|      |                                                                      |                                                     |                                                                                   |                                                                           | / ハルジカ 日のフム 1人                                                |  |
|------|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|--|
| 名称   | AIJ-LCA<br>(3EID 2005)                                               | 3EID(2015)                                          | IDEA ver.3                                                                        | Ecoinvent                                                                 | EPD                                                           |  |
| 分類   | 産業連関式                                                                |                                                     | 積み上げ式                                                                             |                                                                           |                                                               |  |
| 作成主体 | 一般社団法人<br>日本建築学会                                                     | 国立研究開発法人<br>国立環境研究所                                 | 国立研究開発法人<br>産業技術総合研究所                                                             | スイス連邦技術研究所とノルウェー シュミット技術大学                                                | 製品のメーカーやサプライヤー、独<br>立した第三者機関                                  |  |
| データ数 | 約400                                                                 | 約400                                                | 約4800(分類数は約1800)                                                                  | 約15,000                                                                   | 種類や製品によって異る                                                   |  |
| 情報源  | 2005年産業連関表 <sup>※</sup><br>より統計                                      | 2015年産業連関表 <sup>※</sup> よ<br>り統計                    | 統計、実測、論文・報告書、計算した理論値                                                              | 公開文献、業界情報、専門家の知<br>識、実験室の測定結果、公式統計<br>データなど                               | 製品のライフサイクルに関するデータ、供給チェーンの情報、製造プロセスの詳細、エネルギー消費や排出量の測定結果、環境調査など |  |
| 評価範囲 | 原料、エネルギー、サービス、インフラなど、すべ<br>ての活動を含む                                   |                                                     | 原則として原料、エネルギー                                                                     | 原材料の採取、製造、運輸、使用、<br>廃棄物処理すべて                                              | 生命周期全体にわたる環境負荷                                                |  |
| 品質   | すべて同じ情報源(産業連関表)を用いて、データの代表性、地理的有効範囲(日本平均)などの品位は高い。また、データ作成方法の一貫性がある。 |                                                     | 情報源が異なるため、データごとに<br>品質が異なる。代表性、完全性、地<br>理・技術的有効範囲などが、きわめ<br>て品質が高いものもあれば、逆もあ<br>る | データの品質を確保するために厳格<br>な品質管理プロセスを採用していま<br>す。データは、特定の方法論に基づ<br>いて収集、精査、審査される | 作成主体によって異なります。信頼<br>性の高いデータと方法論に基づいて<br>EPDが作成されることが重要        |  |
| 対象物質 | 6種類:エネルギー、<br>CO2、SO2、NO2、CH4、<br>N2O                                | 8種類:エネルギー、<br>CO2、CH4、N2O、HFCs、<br>PFCs、SF6、NF3     | 1000種類近い環境負荷物。マルチ<br>クライテリアで評価可能                                                  | エネルギー、CO2、SO2、NO2、CH4、<br>N2O、水、価額部室、材料、製品、<br>サービスなど                     | エネルギー、環境汚染、廃棄物、健康影響、資源使用                                      |  |
| 他の特徴 | 独自の計算方法を用いており、主要輸入<br>材の影響が考慮されている                                   | 国内完結型(国内温室<br>効果ガス排出量の報<br>告値に一致)と概要輸<br>送を含めたものが公開 | ISOに準拠できるよう作成。海外版<br>(輸出入が盛んな14か国)も公表                                             | データベースの信頼性と国際的な採用を向上させるために努力している。<br>定期的に更新され、最新の情報やメソドロジーを反映している         | 製品の環境情報を透明かつ比較可能にするために設計されている                                 |  |
| 価格   | LCA指針に同封                                                             | 無料                                                  | 有料                                                                                | 有料(OCLに同封)                                                                | 作成有料、使用無料                                                     |  |


#### 精度を高めるデータベースを整理が行われている




# 建物用途毎のホールライフカーボン(WLC)



用途問わず、エネルギーや水の消費に起因するオペレーショナルカーボンと維持・更新が大半を占める。 BEIが小さいほど、オペレーショナルカーボンが低減する。







# ご清聴ありがとうございました



熊谷組グループのSDGs

建設現場から社会課題の解決に取り組んでいます

熊谷組

